Imperial College London

Oliver Watson

Modelling the spread of *pfhrp2* deletion concern in Africa

MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London

Rationale

Significantly higher proportion of deleted samples in low transmission areas

Can only be explained by selection through RDT-guided treatment decisions

Without selection

Centre for Outbreak Analysi:

and Modelling

PCR Prevalence in children 6-59 months old

MRC

and Modelling

Imperial College London

Modelling selection-driven spread

Proportion of people seeking treatment

* Model assumes no change in prevalence and treatment coverage – spread therefore conservative

Outbreak Analys

Fitted model identifies areas of concern for potential selection-driven spread in Africa

Highest concern: Low prevalence plus high RDT-guided treatment

- 1. An increased emergence of *pfhrp2*-deleted mutants can be explained by the introduction of testing by PfHRP2-based RDTs in the last 10 years.
- 2. The use of these RDTs will result in the greatest selection pressure in regions that have low malaria transmission and a high frequency of people seeking treatment.

3. Need for further genetic investigations in the regions identified as having a high HRP2 concern.

- 1. Imperial College London:
 - A. C. Ghani
 - H. C. Slater
 - R. Verity
 - Malaria Modelling Group
- 2. University of North Carolina:
 - S. R. Meshnick
 - J. B. Parr
- 3. University of Kinshasa:
 - M. K. Mwandagalirwa
 - A. Tshefu

Thank you for listening

Email: o.watson15@imperial.ac.uk

4. Wellcome Trust & MRC Centre for Outbreak Analysis and Modelling